多读书多实践,勤思考善领悟

Hbase过滤器详解

本文于1829天之前发表,文中内容可能已经过时。

一、HBase过滤器简介

Hbase提供了种类丰富的过滤器(filter)来提高数据处理的效率,用户可以通过内置或自定义的过滤器来对数据进行过滤,所有的过滤器都在服务端生效,即谓词下推(predicate push down)。这样可以保证过滤掉的数据不会被传送到客户端,从而减轻网络传输和客户端处理的压力。

二、过滤器基础

2.1 Filter接口和FilterBase抽象类

Filter接口中定义了过滤器的基本方法,FilterBase抽象类实现了Filter接口。所有内置的过滤器则直接或者间接继承自FilterBase抽象类。用户只需要将定义好的过滤器通过setFilter方法传递给Scanput的实例即可。

1
setFilter(Filter filter)
1
2
3
4
5
6
// Scan 中定义的setFilter
@Override
public Scan setFilter(Filter filter) {
super.setFilter(filter);
return this;
}
1
2
3
4
5
6
 // Get 中定义的setFilter
@Override
public Get setFilter(Filter filter) {
super.setFilter(filter);
return this;
}

FilterBase的所有子类过滤器如下:

说明:上图基于当前时间点(2019.4)最新的Hbase-2.1.4 ,下文所有说明均基于此版本。

2.2 过滤器分类

HBase 内置过滤器可以分为三类:分别是比较过滤器,专用过滤器和包装过滤器。分别在下面的三个小节中做详细的介绍。

三、比较过滤器

所有比较过滤器均继承自CompareFilter。创建一个比较过滤器需要两个参数,分别是比较运算符比较器实例

1
2
3
4
public CompareFilter(final CompareOp compareOp,final ByteArrayComparable comparator) {
this.compareOp = compareOp;
this.comparator = comparator;
}

3.1 比较运算符

  • LESS (<)
  • LESS_OR_EQUAL (<=)
  • EQUAL (=)
  • NOT_EQUAL (!=)
  • GREATER_OR_EQUAL (>=)
  • GREATER (>)
  • NO_OP (排除所有符合条件的值)

比较运算符均定义在枚举类CompareOperator

1
2
3
4
5
6
7
8
9
10
@InterfaceAudience.Public
public enum CompareOperator {
LESS,
LESS_OR_EQUAL,
EQUAL,
NOT_EQUAL,
GREATER_OR_EQUAL,
GREATER,
NO_OP,
}

注意:在 1.x 版本的HBase中,比较运算符定义在CompareFilter.CompareOp枚举类中,但在2.0之后这个类就被标识为 @deprecated ,并会在3.0移除。所以2.0之后版本的HBase需要使用 CompareOperator这个枚举类。

3.2 比较器

所有比较器均继承自ByteArrayComparable抽象类,常用的有以下几种:

  • BinaryComparator : 使用Bytes.compareTo(byte [],byte [])按字典序比较指定的字节数组。
  • BinaryPrefixComparator : 按字典序与指定的字节数组进行比较,但只比较到这个字节数组的长度。
  • RegexStringComparator : 使用给定的正则表达式与指定的字节数组进行比较。仅支持EQUALNOT_EQUAL操作。
  • SubStringComparator : 测试给定的子字符串是否出现在指定的字节数组中,比较不区分大小写。仅支持EQUALNOT_EQUAL操作。
  • NullComparator :判断给定的值是否为空。
  • BitComparator :按位进行比较。

BinaryPrefixComparatorBinaryComparator的区别不是很好理解,这里举例说明一下:

在进行EQUAL的比较时,如果比较器传入的是abcd的字节数组,但是待比较数据是abcdefgh

  • 如果使用的是BinaryPrefixComparator比较器,则比较以abcd字节数组的长度为准,即efgh不会参与比较,这时候认为abcdabcdefgh 是满足EQUAL条件的;
  • 如果使用的是BinaryComparator比较器,则认为其是不相等的。

3.3 比较过滤器种类

比较过滤器共有五个(Hbase 1.x 版本和2.x 版本相同),见下图:

  • RowFilter :基于行键来过滤数据;
  • FamilyFilterr :基于列族来过滤数据;
  • QualifierFilterr :基于列限定符(列名)来过滤数据;
  • ValueFilterr :基于单元格(cell) 的值来过滤数据;
  • DependentColumnFilter :指定一个参考列来过滤其他列的过滤器,过滤的原则是基于参考列的时间戳来进行筛选 。

前四种过滤器的使用方法相同,均只要传递比较运算符和运算器实例即可构建,然后通过setFilter方法传递给scan

1
2
3
Filter filter  = new RowFilter(CompareOperator.LESS_OR_EQUAL,
new BinaryComparator(Bytes.toBytes("xxx")));
scan.setFilter(filter);

DependentColumnFilter的使用稍微复杂一点,这里单独做下说明。

3.4 DependentColumnFilter

可以把DependentColumnFilter理解为一个valueFilter和一个时间戳过滤器的组合DependentColumnFilter有三个带参构造器,这里选择一个参数最全的进行说明:

1
2
3
DependentColumnFilter(final byte [] family, final byte[] qualifier,
final boolean dropDependentColumn, final CompareOperator op,
final ByteArrayComparable valueComparator)
  • family :列族
  • qualifier :列限定符(列名)
  • dropDependentColumn :决定参考列是否被包含在返回结果内,为true时表示参考列被返回,为false时表示被丢弃
  • op :比较运算符
  • valueComparator :比较器

这里举例进行说明:

1
2
3
4
5
6
DependentColumnFilter dependentColumnFilter = new DependentColumnFilter( 
Bytes.toBytes("student"),
Bytes.toBytes("name"),
false,
CompareOperator.EQUAL,
new BinaryPrefixComparator(Bytes.toBytes("xiaolan")));
  • 首先会去查找student:name中值以xiaolan开头的所有数据获得参考数据集,这一步等同于valueFilter过滤器;

  • 其次再用参考数据集中所有数据的时间戳去检索其他列,获得时间戳相同的其他列的数据作为结果数据集,这一步等同于时间戳过滤器;

  • 最后如果dropDependentColumn为true,则返回参考数据集+结果数据集,若为false,则抛弃参考数据集,只返回结果数据集

四、专用过滤器

专用过滤器通常直接继承自FilterBase,适用于范围更小的筛选规则。

4.1 单列列值过滤器 (SingleColumnValueFilter)

基于某列(参考列)的值决定某行数据是否被过滤。其实例有以下方法:

  • setFilterIfMissing(boolean filterIfMissing) :默认值为false,即如果该行数据不包含参考列,其依然被包含在最后的结果中;设置为true时,则不包含;
  • setLatestVersionOnly(boolean latestVersionOnly) :默认为true,即只检索参考列的最新版本数据;设置为false,则检索所有版本数据。
1
2
3
4
5
6
7
SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"student".getBytes(),
"name".getBytes(),
CompareOperator.EQUAL,
new SubstringComparator("xiaolan"));
singleColumnValueFilter.setFilterIfMissing(true);
scan.setFilter(singleColumnValueFilter);

4.2 单列列值排除器 (SingleColumnValueExcludeFilter)

SingleColumnValueExcludeFilter继承自上面的SingleColumnValueFilter,过滤行为与其相反。

4.3 行键前缀过滤器 (PrefixFilter)

基于RowKey值决定某行数据是否被过滤。

1
2
PrefixFilter prefixFilter = new PrefixFilter(Bytes.toBytes("xxx"));
scan.setFilter(prefixFilter);

4.4 列名前缀过滤器 (ColumnPrefixFilter)

基于列限定符(列名)决定某行数据是否被过滤。

1
2
ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter(Bytes.toBytes("xxx"));
scan.setFilter(columnPrefixFilter);

4.5 分页过滤器 (PageFilter)

可以使用这个过滤器实现对结果按行进行分页,创建PageFilter实例的时候需要传入每页的行数。

1
2
3
4
public PageFilter(final long pageSize) {
Preconditions.checkArgument(pageSize >= 0, "must be positive %s", pageSize);
this.pageSize = pageSize;
}

下面的代码体现了客户端实现分页查询的主要逻辑,这里对其进行一下解释说明:

客户端进行分页查询,需要传递startRow(起始RowKey),知道起始startRow后,就可以返回对应的pageSize行数据。这里唯一的问题就是,对于第一次查询,显然startRow就是表格的第一行数据,但是之后第二次、第三次查询我们并不知道startRow,只能知道上一次查询的最后一条数据的RowKey(简单称之为lastRow)。

我们不能将lastRow作为新一次查询的startRow传入,因为scan的查询区间是[startRow,endRow) ,即前开后闭区间,这样startRow在新的查询也会被返回,这条数据就重复了。

同时在不使用第三方数据库存储RowKey的情况下,我们是无法通过知道lastRow的下一个RowKey的,因为RowKey的设计可能是连续的也有可能是不连续的。

由于Hbase的RowKey是按照字典序进行排序的。这种情况下,就可以在lastRow后面加上0 ,作为startRow传入,因为按照字典序的规则,某个值加上0 后的新值,在字典序上一定是这个值的下一个值,对于HBase来说下一个RowKey在字典序上一定也是等于或者大于这个新值的。

所以最后传入lastRow+0,如果等于这个值的RowKey存在就从这个值开始scan,否则从字典序的下一个RowKey开始scan。

25个字母以及数字字符,字典排序如下:

'0' < '1' < '2' < ... < '9' < 'a' < 'b' < ... < 'z'

分页查询主要实现逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
byte[] POSTFIX = new byte[] { 0x00 };
Filter filter = new PageFilter(15);

int totalRows = 0;
byte[] lastRow = null;
while (true) {
Scan scan = new Scan();
scan.setFilter(filter);
if (lastRow != null) {
// 如果不是首行 则lastRow + 0
byte[] startRow = Bytes.add(lastRow, POSTFIX);
System.out.println("start row: " +
Bytes.toStringBinary(startRow));
scan.withStartRow(startRow);
}
ResultScanner scanner = table.getScanner(scan);
int localRows = 0;
Result result;
while ((result = scanner.next()) != null) {
System.out.println(localRows++ + ": " + result);
totalRows++;
lastRow = result.getRow();
}
scanner.close();
//最后一页,查询结束
if (localRows == 0) break;
}
System.out.println("total rows: " + totalRows);

需要注意的是在多台Regin Services上执行分页过滤的时候,由于并行执行的过滤器不能共享它们的状态和边界,所以有可能每个过滤器都会在完成扫描前获取了PageCount行的结果,这种情况下会返回比分页条数更多的数据,分页过滤器就有失效的可能。

4.6 时间戳过滤器 (TimestampsFilter)

1
2
3
4
List<Long> list = new ArrayList<>();
list.add(1554975573000L);
TimestampsFilter timestampsFilter = new TimestampsFilter(list);
scan.setFilter(timestampsFilter);

4.7 首次行键过滤器 (FirstKeyOnlyFilter)

FirstKeyOnlyFilter只扫描每行的第一列,扫描完第一列后就结束对当前行的扫描,并跳转到下一行。相比于全表扫描,其性能更好,通常用于行数统计的场景,因为如果某一行存在,则行中必然至少有一列。

1
2
FirstKeyOnlyFilter firstKeyOnlyFilter = new FirstKeyOnlyFilter();
scan.set(firstKeyOnlyFilter);

五、包装过滤器

包装过滤器就是通过包装其他过滤器以实现某些拓展的功能。

5.1 SkipFilter过滤器

SkipFilter包装一个过滤器,当被包装的过滤器遇到一个需要过滤的KeyValue实例时,则拓展过滤整行数据。下面是一个使用示例:

1
2
3
4
5
// 定义ValueFilter过滤器
Filter filter1 = new ValueFilter(CompareOperator.NOT_EQUAL,
new BinaryComparator(Bytes.toBytes("xxx")));
// 使用SkipFilter进行包装
Filter filter2 = new SkipFilter(filter1);

5.2 WhileMatchFilter过滤器

WhileMatchFilter包装一个过滤器,当被包装的过滤器遇到一个需要过滤的KeyValue实例时,WhileMatchFilter则结束本次扫描,返回已经扫描到的结果。下面是其使用示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Filter filter1 = new RowFilter(CompareOperator.NOT_EQUAL,
new BinaryComparator(Bytes.toBytes("rowKey4")));

Scan scan = new Scan();
scan.setFilter(filter1);
ResultScanner scanner1 = table.getScanner(scan);
for (Result result : scanner1) {
for (Cell cell : result.listCells()) {
System.out.println(cell);
}
}
scanner1.close();

System.out.println("--------------------");

// 使用WhileMatchFilter进行包装
Filter filter2 = new WhileMatchFilter(filter1);

scan.setFilter(filter2);
ResultScanner scanner2 = table.getScanner(scan);
for (Result result : scanner1) {
for (Cell cell : result.listCells()) {
System.out.println(cell);
}
}
scanner2.close();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
rowKey0/student:name/1555035006994/Put/vlen=8/seqid=0
rowKey1/student:name/1555035007019/Put/vlen=8/seqid=0
rowKey2/student:name/1555035007025/Put/vlen=8/seqid=0
rowKey3/student:name/1555035007037/Put/vlen=8/seqid=0
rowKey5/student:name/1555035007051/Put/vlen=8/seqid=0
rowKey6/student:name/1555035007057/Put/vlen=8/seqid=0
rowKey7/student:name/1555035007062/Put/vlen=8/seqid=0
rowKey8/student:name/1555035007068/Put/vlen=8/seqid=0
rowKey9/student:name/1555035007073/Put/vlen=8/seqid=0
--------------------
rowKey0/student:name/1555035006994/Put/vlen=8/seqid=0
rowKey1/student:name/1555035007019/Put/vlen=8/seqid=0
rowKey2/student:name/1555035007025/Put/vlen=8/seqid=0
rowKey3/student:name/1555035007037/Put/vlen=8/seqid=0

可以看到被包装后,只返回了rowKey4之前的数据。

六、FilterList

以上都是讲解单个过滤器的作用,当需要多个过滤器共同作用于一次查询的时候,就需要使用FilterListFilterList支持通过构造器或者addFilter方法传入多个过滤器。

1
2
3
4
5
6
7
8
// 构造器传入
public FilterList(final Operator operator, final List<Filter> filters)
public FilterList(final List<Filter> filters)
public FilterList(final Filter... filters)

// 方法传入
public void addFilter(List<Filter> filters)
public void addFilter(Filter filter)

多个过滤器组合的结果由operator参数定义 ,其可选参数定义在Operator枚举类中。只有MUST_PASS_ALLMUST_PASS_ONE两个可选的值:

  • MUST_PASS_ALL :相当于AND,必须所有的过滤器都通过才认为通过;
  • MUST_PASS_ONE :相当于OR,只有要一个过滤器通过则认为通过。
1
2
3
4
5
6
7
@InterfaceAudience.Public
public enum Operator {
/** !AND */
MUST_PASS_ALL,
/** !OR */
MUST_PASS_ONE
}

使用示例如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
List<Filter> filters = new ArrayList<Filter>();

Filter filter1 = new RowFilter(CompareOperator.GREATER_OR_EQUAL,
new BinaryComparator(Bytes.toBytes("XXX")));
filters.add(filter1);

Filter filter2 = new RowFilter(CompareOperator.LESS_OR_EQUAL,
new BinaryComparator(Bytes.toBytes("YYY")));
filters.add(filter2);

Filter filter3 = new QualifierFilter(CompareOperator.EQUAL,
new RegexStringComparator("ZZZ"));
filters.add(filter3);

FilterList filterList = new FilterList(filters);

Scan scan = new Scan();
scan.setFilter(filterList);

参考资料

HBase: The Definitive Guide _> Chapter 4. Client API: Advanced Features